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Exact description of photon migration in anisotropically scattering media

V. N. Fomenko,1 F. M. Shvarts,2 and M. A. Shvarts1
1Department of Mathematics, University for Railway Communications, St. Petersburg, Russia

2State Optical Institute, Institute for Laser Physics, St. Petersburg, Russia
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The aim of the present paper is to deliver a method for exact calculation of the probability of photon
migration in an infinite and homogeneous medium scattering photons anisotropically. The phase function is
represented as an expansion over spherical harmonics. The probability of photon migration is obtained as an
expansion with respect to the number of scatterings with the coefficients depending on the distance-to-time
ratio and can be easily calculated from recurrence relations. Up to 30 scatterings are taken into account when
computing the migration probabilities, the number of effectively contributing scatterings being strongly de-
pendent on the distance-to-time ratio decreasing when one approaches the propagation front. The important
property of the method is its capability to describe exactly migration from the early arriving photons up to the
scattering ones. The limits of the approximate description of anisotropic scattering as isotropic with an effec-
tive value of the scattering coefficient is analyzed by calculating the best-fit value of the scattering coefficient.

PACS number~s!: 42.68.Ay, 02.70.Lq, 05.60.2k, 87.63.2d
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I. INTRODUCTION

Recently, optical tomography has become increasin
important in tissue investigations, in particular, those rela
to medical diagnostics. For purposes of optical tomograp
a correct description of photon migration plays a fundam
tal role. In this paper, we give an exact theory of phot
migration in an anisotropically scattering infinite medium
Nowadays, the diffusion approximation is widely used
describe photon migration. But the limits of this approxim
tion are narrowed down by the fact that the most informat
photons are the ones first to arrive, which form the propa
tion front and are not described by diffusion theory~see
Refs. @1# and @2#, for instance!. For this reason, a metho
going beyond the diffusion limit is greatly desirable for ti
sue investigations. In this paper, we investigate the accu
of the widely applied method of describing anisotropica
scattering media as isotropically scattering media with
effective scattering coefficient. The conclusion we draw fro
this analysis is that such an approach is no more than a ro
approximation if photons with small retardation are of inte
est. Note that the present paper is a natural generalizatio
the method describing photon migration in isotropically sc
tering media~see Ref.@3#!. This paper is organized as fo
lows: in Sec. II we give the mathematical apparatus of
theory, results of the numerical analysis of photon migrat
in anisotropically scattering media are given in Sec. III, a
Sec. IV contains some concluding remarks.

II. FORMULATION OF THE THEORY

In this section, we give a theoretical description of phot
propagation in an anisotropically scattering medium which
assumed to be homogeneous and isotropic. LetP(r ,t) be the
expectation value of the number of photons traveling fr
the initial space-time pointO(0,0) to a small volumeDV
around the final pointM (r ,t) per unit volume. In what fol-
lows we ignore any nonlinear optical effects, which implie
PRE 611063-651X/2000/61~2!/1990~6!/$15.00
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low enough level of the radiation intensity. This restriction
compatible with many important applications, in particula
optical tomography. An important consequence of this
sumption is thatP(r ,t) is a linear functional of the radiation
flux at the initial pointR(n̂):

P~r ,t !5P~r ,t !@R~ n̂!#, ~1!

wheren̂ is a unit vector. Note thatP(r ,t) equals the migra-
tion probability density ifR(n̂) is normalized to unity:

E R~ n̂!dn51. ~2!

Equation ~1! defines the functionalP on positive definite
functionsR(n̂). For what follows it is important to extend
the functionalP to complex-valued functions. This can b
done in a straightforward way using the linearity ofP. We
affix the subscriptn to the quantitiesP andP(r ,t) to indicate
the number of scatterings the photon experiences on its
gration. Figure 1 illustrates how to construct a recurren
relation forPn(r ,t). In this figureO andM are the initial and
final points, respectively. The first scattering of the phot
by the medium occurs at the pointN. If the number of scat-
terings equalsn11, then the migration on the segmentNM
containsn scatterings. We immediately arrive at the follow
ing relation:

Pn11~r ,t !@RO~ n̂!#5E d3r 1Pn~r2 ,t2r 1!@RN~ n̂1!#, ~3!

whereRO(n̂) is the angle distribution of the radiation flux a
the pointO andRN(n̂1) is the corresponding quantity at th
point N per unit volume. Bearing in mind that the interior o
the segmentON is the photon’s free path, we have

RN~ n̂1!5
exp@2~ms1ma!r 1#

r 1
2

msf ~ n̂1!RO~ r̂1!, ~4!
1990 ©2000 The American Physical Society
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PRE 61 1991EXACT DESCRIPTION OF PHOTON MIGRATION . . .
where the light velocity is assumed to be unity,ms and ma
are the scattering and absorption coefficients, respectiv
and f (n̂1) is the phase function. Let us choose the polar a
along the vectorr̂1 , which is the direction of the inciden
photons at the pointN. Then the phase function can be e
panded over spherical harmonics as follows:

f ~ n̂1!5(
L̃

a L̃

YL̃0~V r1
!

A4p
, ~5!

whereV r1
5(u1 ,w1); u1 is the angle betweenn̂1 andr1 ; the

anglew1 describes rotation with respect to the vectorr1 . The
normalization condition of the phase function*dV f (n̂)51
implies thata051. We obtain isotropic scattering ifa L̃50
for L̃.0. It is useful to expandf (n̂1) over spherical harmon
ics with respect to the vectorr̂2 as the polar axis. This yield

f ~ n̂1!5(
L̃M̃

a L̃D
M̃0

L̃
~0,u12,0!

YL̃M̃~V r̂2
!

A4p
, ~6!

whereD
M̃0

L̃
is the Wigner function. After substituting expre

sion ~6! into Eq. ~4! and using Eq.~3! and linearity of the
functionalPn , we obtain

Pn11~r ,t !@RO~ n̂!#5E d3r 1

exp@2~ms1ma!r 1#

r 1
2 msRO~ r̂1!

3(
L̃M̃

a L̃D
M̃0

L̃
~0,u12,0!Pn~r2 ,t2r 1!

3FYL̃M̃~V r2
!

A4p
G . ~7!

We introduce the new quantity

Pn
LM~r ,t !5Pn~r ,t !FYLM~V r !

A4p
G . ~8!

FIG. 1. Scheme explaining recursive description of photon
gration.
ly,
is

We emphasize thatr in Eq. ~8! is the polar axis for the
spherical harmonic in the argument ofPn(r ,t). Then setting
RO(n̂)5(1/A4p)YLM(V r) in Eq. ~7!, one easily obtains

Pn11
LM ~r ,t !5msE dr1dV r

1

A4p
YLM~V r !

3exp@2~ms1ma!r 1#

3(
L̃M̃

a L̃D
M̃0

L̃
~0,u12,0!Pn

L̃M̃~r 2 ,t2r 1!. ~9!

The spherical harmonic in Eq.~9! depends on two angles
u15(r1 , r̂ ) andw1 describes rotation with respect to the ve
tor r . The integrand in Eq.~9! depends onw1 only through
YLM(V r), and

E
0

2p

dw1YLM~V r !50

if MÞ0. For this reason,

Pn
LM~r ,t !50 for MÞ0. ~10!

As a result, Eq.~9! takes the form

Pn11
L ~r ,t !5

ms

A4p
E dr1dV rYL0~u1!exp@2~ms1ma!r 1#

3(
L̃

a L̃Pn
L̃~r 2 ,t2r 1!PL̃~cosu12!. ~11!

In Eq. ~11! we omitted the superscriptM equaling 0 and used
the fact

D00
L ~0,u,0!5PL~cosu!,

wherePL is the Legendre polynomial of orderL. After trans-
forming the volume integral in Eq.~11!, we obtain

Pn11
L ~r ,t !5msApE

0

r max
dr1E

xmin

1

dx1YL0~u1!

3exp@2~ms1ma!r 1#

3(
L̃

a L̃Pn
L̃~r 2 ,t2r 1!PL̃~cosu12!, ~12!

where

xmin5maxS 21,
r 22t212tr 1

2rr 1
D ~13!

follows from the inequalityur2r1u<t2r 1 and

r max5
r 1t

2
, ~14!

which follows from Eq.~13! and the fact thatxmin<1. For
details of further developments related to Eq.~12!, it is use-
ful to consult Ref.@3#. Note that the notationPn(r ,t) in Ref.

i-
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@3# coincides with the notationPn
0(r ,t) in this paper. Follow-

ing the arguments of Ref.@3#, one can prove that the functio

Pn
L~r ,t !exp@~ms1ma!t# ~15!

is a homogeneous function of ordern23, so we arrive at the
relation

Pn
L~r ,t !5exp@2~ms1ma!t#qn

LS r

t D ~mst !
n23, ~16!

where we have introduced the functionsqn
L(v). Using Eq.

~16!, we obtain the following recurrence relation for th
quantitiesqn

L(v):

qn11
L ~v !5

1

2v E0

1

dw w(
L̃

a L̃~2L̃11!1/2qn
L̃~w!

3E
~12v !/~11w!

gm~v,w!

dg
gn21

12g

3PLS v22w2g21~12g!2

2v~12g! D
3PL̃S v22w2g22~12g!2

2wg~12g! D , ~17!

where

gm~v,w!5H 12v
12w

if w,v,

11v
11w

if w.v.

~18!

Equation~17! enables one to calculate the functionsqn
L(v)

for arbitraryn andL starting fromn50 for each value ofL:

q0
L~v !5

ms
3

4p
~2L11!1/2d~v21!. ~19!

In numerical calculations it is more convenient to apply E
~17! starting fromn51 than fromn50 becauseq0

L(v) con-
tains ad function. The functionsq1

L(v) can be obtained ana

lytically; we give them below for the casea L̃50 with L̃
.1:

q1
0~v !5

ms
3

4pv H ln
11v
12v

1a1)S v2 ln
11v
12v

22v D J ,

q1
1~v !5

)ms
3

16pv2 H 2F ~v211!ln
11v
12v

22vG
1a1)F ~113v4!ln

11v
12v

22v~113v2!G J .

~20!

To obtain the migration probability it is sufficient to kno
the quantitiesqn

L(v). Let R(n̂) be the photon flux distribu-
tion at the starting point normalized to unity. After expan
ing over spherical harmonics, we have
.

-

R~ n̂!5(
L

bLYL0~Vs!
1

A4p
. ~21!

Relation~21! implies that we have chosen the reference a
for V along the vectors. The normalization condition yields
b051 since

E dV YL0~V!5HA4p if L50,

0 if L.0.
~22!

To find the migration probability density along the vectorr ,
we expandR(n̂) with respect to this direction:

R~ n̂!5(
LM

bLDM0
L

„0,~s, r̂ !,0…
YLM~V r !

A4p
. ~23!

Taking Eqs.~10! and ~8! into account yields

P~r ,t !5P~r ,t !@R~ n̂!#5(
L

bLPL„cos~s, r̂ !…PL~r ,t !.

Using Eq.~16!, we obtain the following practical expressio
for the migration probability density:

P~r ,t !5exp@2~ms1ma!t#

3 (
L50

Lmax

(
n50

`

bLPL„cos~s, r̂ !…qn
LS r

t D ~mst !
n23.

~24!

where (s, r̂ ) is the angle betweens and r . The values ofL
over which the sum is calculated in Eq.~24! are those con-
tained in the phase function expansion~5! ~see next section
for details!. Since this function is not known quite exactly,
is sufficient to restrict oneself to the valuesL50,1. Higher
values ofL determine details of the phase function that a
not important in applications and can be taken into acco
by a slight change in the parametersms anda1 @see Eq.~5!#.
As for the sum over the number of scatterings,n, the number
of terms effectively contributing depends on the values or
and t increasing witht and decreasing asr approachest
~draws nearer the light front; let us recall that the light v
locity is assumed to be 1 in this paper!. The essential point to
stress here is that the diffusion approximation yields go
enough results for large values ofn. So the present approac
is complementary to the diffusion approximation.

III. NUMERICAL ANALYSIS OF PHOTON MIGRATION

We performed calculations of the photon migration pro
abilities based on Eq.~24! in the preceding section. Towar
this end, the functionsqn

L(v) were first calculated using re
currence relations~17! and stored in computer memory. Va
ues were calculated forn up to 30, which enables one t
calculate probability densities formst<15 with an accuracy
to within 1%. Figures 2 and 3 plot the functionsqn

0(v) and
qn

1(v). We assumed in the calculations that the expansion
the phase function in Eq.~5! contained the terms withL
50 andL51 only. Therefore the only parameter specifyin
the phase function isa1 . Its positive definiteness implie
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that ua1u<1/). Here a150 yields isotropic scattering
whereas the valuea151/) corresponds to the case with n
backward scattering. Since scattering into the forward he
sphere dominates, values ofa1>0 are physically sensible
The second parameter we used in our calculations was
scattering coefficientms . We ignored photon absorption, se
ting ma50. Figure 4 depicts photon travel through the m
dium that we used in the calculations. At the initial pointO
the photon is directed along thez axis as is the case for lase
light injection. The photon is detected in the plane norma
this axis and offset from the pointO by the distanced. The
first scattering occurs at the pointN. So the probability of
migration to the detection point can be represented as

PM~ t,d,s!5msE
0

zmax
dzexp~2msz!P~r M2rN ,t2z!,

~25!

FIG. 2. Functionsqn
0(v) for some values ofn.

FIG. 3. Functionsqn
1(v) for some values ofn.
i-

he

-

o

wheres is the distance between the detection point and thz
axis.zmax in Eq. ~25! is defined by the inequality

ur M2rNu,t2z, ~26!

which yields

zmax5
t1d

2
2

s2

2~ t2d!
. ~27!

The migration probabilityP(r M2rN , t2z) entering into Eq.
~25! is calculated using formula~24!. The parametersbL
specifying the angle distribution of the photon scattered
the pointN should be set equal toaL appearing in Eq.~5! for
the phase function. Table I summarizes the results of
calculations. For each value ofd ~the z coordinate of the
detection plane!, we computed the migration densities fo
various values ofs ~distance from the detection point to thez
axis!. The values ofs are given in the first line of each
segment of the table. Clearly,s<At22d2. In all cases the
total migration timet515. The second line contains exa
values of the migration probability densities for anisotrop
scattering withms51 anda150.5. The third line gives the
best-fit data obtained if the scattering is considered to
isotropic, the fitting parameter being the scattering coe
cient ms . The best-fit value ofms is given above each seg
ment of the table. We considered two classes of detec
planes: forward lying and rear lying. The latter ones are
cated behind the light source and can be reached by diffu
reflected photons only. The criterion we used in the fitti
procedure is the root-mean-square relative error given by
formula

d5F (
k50

10
1

11S PM
exact~ t,d,sk!2PM

isotropic~ t,d,sk!

PM
exact~ t,d,sk!

D 2G1/2

,

~28!

with sk5k. The values ofd corresponding to the best fit ar
given together with thems values. As can be seen from Tab
I, an approach with isotropic scattering with an effecti
scattering coefficient can yield a very poor approximati
only. The approximation gets worse for more distant det
tion planes. The reason is obvious: in this case the fi
transmitted photons play a more important role, but they
perience a smaller number of scatterings on average and

FIG. 4. Scheme of photon travel for which the migration pro
abilities were calculated.



1994 PRE 61V. N. FOMENKO, F. M. SHVARTS, AND M. A. SHVARTS
TABLE I. Probabilities of photon migration according to the scheme of Fig. 4.

d511, ms50.91,d554%
s 0 1 2 3 4 5 6 7 8 9 10

Exact 4.531025 4.231025 3.631025 2.731025 1.731025 9.531026 4.331026 1.531026 3.631027 5.031028 1.531029

Fit 2.631025 2.431025 1.931025 1.331025 7.331026 3.631026 1.531026 5.431027 1.531027 2.931028 2.531029

d510, ms50.82,d528%
s 0 1 2 3 4 5 6 7 8 9 10

Exact 9.731025 9.331025 8.031025 6.231025 4.331025 2.631025 1.331025 5.531026 1.731026 3.931027 4.831028

Fit 8.731025 8.231025 6.731025 4.931025 3.131025 1.731025 8.431026 3.531026 1.231026 3.531027 7.131028

d55, ms50.69,d56.9%
s 0 1 2 3 4 5 6 7 8 9 10

Exact 8.831024 8.531024 7.631024 6.331024 4.931024 3.431024 2.231024 1.331024 6.331025 2.731025 9.331026

Fit 9.431024 9.031024 7.931024 6.431024 4.831024 3.331024 2.031024 1.131024 5.931025 2.731025 1.131025

d525, ms50.76,d55.9%
s 0 1 2 3 4 5 6 7 8 9 10

Exact 3.131024 3.031024 2.731024 2.231024 1.731024 1.231024 7.331025 4.131025 2.031025 8.531026 2.931026

Fit 3.331024 3.231024 2.831024 2.331024 1.731024 1.131024 6.931025 3.831025 1.931025 8.431026 3.231026

d5210, ms50.91,d532%
s 0 1 2 3 4 5 6 7 8 9 10

Exact 7.131026 6.831026 5.831026 4.431026 3.031026 1.731026 8.731027 3.631027 1.131027 2.531028 3.231029

Fit 5.031026 4.731026 4.031026 3.031026 2.031026 1.131026 5.731027 2.531027 8.831028 2.531028 4.831029

d5211, ms51.01,d560%
s 0 1 2 3 4 5 6 7 8 9 10

Exact 2.031026 1.931026 1.631026 1.131026 7.331027 3.931027 1.831027 6.131028 1.531028 2.131029 5.8310211

Fit 8.331027 7.831027 6.331027 4.531027 2.831027 1.531027 6.531028 2.331028 6.631029 1.331029 1.0310210
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IV. CONCLUDING REMARKS

Let us summarize the results presented in this paper.
have given a method for describing migration probabilities
an infinite, homogeneous medium scattering photons an
tropically. The result is given in the form of an expansi
over the number of scatterings the photon undergoes a
migrates in the medium. The expansion converges rapi
and the error originating from its cutoff can be easily es
mated. The number of terms that need to be included
creases as one approaches the light front, i.e., for the
transmitted photons. For diffusive photons, where the nu
ber of scatterings is large, the diffusion approximation b
comes a reliable approach. Thus one can say that our me
builds a bridge between the two extreme cases: early tr
mitted photons and diffusive photons covering the reg
most difficult for investigation~see Ref.@4#, for example!.
Let us briefly discuss how the present work relates to so
other investigations in this field. First of all, note Ishimaru
@6# and Furutsu’s@7# theories. In these papers differenti
equations for light intensity are derived which describe lig
propagation more precisely than the standard diffusion eq
tion does. The main approximation used in these theorie
the linear dependence of the light intensity on the cosine
-

e

o-

it
y,
-
e-
st
-
-
od
s-

n

e

t
a-
is
f

the angle determining the propagation direction~see Ref.
@8#!. Both approaches substantially improve the diffusion a
proximation. Nevertheless, it is clear that they are not su
cient near the light front where the forward direction of lig
propagation strongly dominates. A more accurate accoun
the problem is given in Gershenson’s paper@9# where an
equation is obtained that is similar to the diffusion equat
but includes the angular distribution of the light intensit
This equation is expected to predict the intensity of multip
scattering at earlier times and shorter distances than the
fusion equation can. Note that the approach of this pape
difficult to apply in the case of a strongly peaked phase fu
tion because of the poorly converging expansion over sph
cal harmonics. That is why the so-called two-stream theo
are useful in which the forward and backward scattering
assumed to dominate in course of light propagation~see Ref.
@1#!. The present method can be also applied to boun
media using the modified Monte Carlo method described
Ref. @5#. Nevertheless, a generalization of the present
proach to bounded media would be very desirable and wo
substantially increase its practical value. Some attempt
this kind are currently being undertaken.
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