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Exact description of photon migration in anisotropically scattering media
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The aim of the present paper is to deliver a method for exact calculation of the probability of photon
migration in an infinite and homogeneous medium scattering photons anisotropically. The phase function is
represented as an expansion over spherical harmonics. The probability of photon migration is obtained as an
expansion with respect to the number of scatterings with the coefficients depending on the distance-to-time
ratio and can be easily calculated from recurrence relations. Up to 30 scatterings are taken into account when
computing the migration probabilities, the number of effectively contributing scatterings being strongly de-
pendent on the distance-to-time ratio decreasing when one approaches the propagation front. The important
property of the method is its capability to describe exactly migration from the early arriving photons up to the
scattering ones. The limits of the approximate description of anisotropic scattering as isotropic with an effec-
tive value of the scattering coefficient is analyzed by calculating the best-fit value of the scattering coefficient.

PACS numbes): 42.68.Ay, 02.70.Lq, 05.66:k, 87.63~d

[. INTRODUCTION low enough level of the radiation intensity. This restriction is
compatible with many important applications, in particular,

Recently, optical tomography has become increasinglpptical tomography. An important consequence of this as-
important in tissue investigations, in particular, those relatecsumption is thaP(r,t) is a linear functional of the radiation
to medical diagnostics. For purposes of optical tomographyflux at the initial pointR(f):
a correct description of photon migration plays a fundamen-
tal role. In this paper, we give an exact theory of photon P(r,t)=P(r,)[R(A)], (1)
migration in an anisotropically scattering infinite medium. . ) i
Nowadays, the diffusion approximation is widely used to'Wheref is a unit vector. Note tha(r,t) equals the migra-
describe photon migration. But the limits of this approxima-tion probability density ifR(A) is normalized to unity:
tion are narrowed down by the fact that the most informative
photons are the ones first to arrive, which form the propaga- f R(A)dn=1. 2)
tion front and are not described by diffusion thedqsee
Refs.[1] and[2], for instancé For this reason, a method
going beyond the diffusion limit is greatly desirable for tis- . R N
sue investigations. In this paper, we investigate the accuracﬁznc;'onst.R(n)”ij Iior whatl foIIov;/s 'é |fs |mtportan_f_;9 extent()j
of the widely applied method of describing anisotropicallyd € func |onta ' h(?[fcompdex—va ue utr;]c |?ns. i %]f:\‘;"vn €
scattering media as isotropically scattering media with an one In a straightiorward way using the finearity €

effective scattering coefficient. The conclusion we draw fromaff'x the subscriph to the quantities’ andP(r,t_) to |nd|ca§e .
He number of scatterings the photon experiences on its mi-

this analysis is that such an approach is no more than a rouQ{gration Figure 1 illustrates how to construct a recurrence
approximation if photons with small retardation are of inter- on. g oo I
(?Iatlon forP,(r,t). In this figureO andM are the initial and

est. Note that the present paper is a natural generalization . . : ;
the method describing photon migration in isotropically scat-ﬁnilhpo'msd’. respecnvely{ t'lr']he f'ﬁ ﬁcct%tterlng l:? f thfe phct)ton
tering media(see Ref[3]). This paper is organized as fol- y the medium occurs at the pol € humber of scat-

lows: in Sec. Il we give the mathematical apparatus of theterlngs equais+1, then the migration on the segmeiivt

theory, results of the numerical analysis of photon migrationcoma'nsn scatterings. We immediately arrive at the follow-

in anisotropically scattering media are given in Sec. Il and"9 relation:
Sec. IV contains some concluding remarks.

Equation (1) defines the functionaP on positive definite

Pn+1(f,t)[Ro(ﬁ)]=f d®ryPo(ra,t=r)[Ry(Ap], (3

II. FORMULATION OF THE THEORY
] ) ] ] o whereRg(f) is the angle distribution of the radiation flux at
In thls.sec.non, we give a.theorencal dgscnp'uc_m of photo_nthe pointO andRy(f,) is the corresponding quantity at the
propagation in an anisotropically scattering medium which isyqint N per unit volume. Bearing in mind that the interior of

assumed to be homogeneous and isotropicF(eit) be the e segmenON is the photon’s free path, we have
expectation value of the number of photons traveling from

the initial space-time poin©(0,0) to a small volume\V ex — (st o) 1]
around the final poinM (r,t) per unit volume. In what fol- Ry(Ap) = ———usf(M)Ro(F1), (@)
lows we ignore any nonlinear optical effects, which implies a 1
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M We emphasize that in Eq. (8) is the polar axis for the

spherical harmonic in the argumentIdf(r,t). Then setting
Ro(N) = (1N47)Y (L) in Eq. (7), one easily obtains

1
PLM (r,t)= fdr dQ,——=Y, u(Q,)
n+1( Ms 1 rm LM( r

612
N Xexd —(ust ua)rq]
AL LM
X2 aiDg (0,610 PM(rp t—r1). (9)
LM
1 The spherical harmonic in Eq9) depends on two angles,
6,=(r7,7) and¢, describes rotation with respect to the vec-
tor r. The integrand in Eq(9) depends onp; only through
0 Yim(€2y), and
FIG. 1. Scheme explaining recursive description of photon mi- 2m
gration. 0 de1Y m(Q;)=0

where the light velocity is assumed to be unity, and 4a it M=£0. For this reason

are the scattering and absorption coefficients, respectively, ’

andf(f,) is the phase function. Let us choose the polar axis P-M(r.t)=0 for M#0. (10)
along the vectoff,, which is the direction of the incident

photons at the poinN. Then the phase function can be ex- As a result, Eq(9) takes the form

panded over spherical harmonics as follows:

M
Yio(Q) Phoa(r,t)= JE f dridQ,Y o 61)exd — (pst ma)r1]

f(Ay) = o ——, 5
(fiy) ? i (5

WhereQr1=(01,cp1); 0, is the angle betweeiy, andr; the
anglee; describes rotation with respect to the veatpr The | Eq. (11) we omitted the superscripd equaling 0 and used
normalization condition of the phase functigd( f(A)=1  he fact

implies thatay=1. We obtain isotropic scattering i =0

for L>0. It is useful to expand(f,) over spherical harmon- D§4(0,6,0)= P, (cos#),

ics with respect to the vectdp as the polar axis. This yields

XX, aiPy(ry,t—r1)PL(cOS0y,). (11
L

whereP, is the Legendre polynomial of ordér After trans-
Yin(Q:) forming the volume integral in Eq11), we obtain
2

W , (6)

. L
f(Ay) =2 aiDf;4(0.6120) r )
- Ph+1(r,t):/-Ls\/;J'0 dry | dx;Yio(61)

Xmin

Xexd — (st pa)ri]

whereDk/IO is the Wigner function. After substituting expres-
sion (6) into Eq. (4) and using Eq(3) and linearity of the

functional ’,,, we obtain T
XZ a[Pn(rz,t—rl)P[(Cosﬂlz), (12)
L

exd — (ust ma)rq]
Pos1(r,H[Ro(h =fd3r Ro(f
n+1(rO[Ro(A) ] 1 f% msRo(f1) where
AL r2—t2+2try
X3 aiD (0,010 Po(rz,t=1y) Xmm:mw{_ y o 13
Y 2rr 4
m(€dr,) follows from the inequalityjr —r,|<t—r, and
X| —— (7)
VA r+t
rmax:T- (14

We introduce the new quantity

which follows from Eq.(13) and the fact thak,,<1. For

PM(r.t)=Py(r,t) Yim(E) _ (8  details of further developments related to Etp), it is use-
3 Var ful to consult Ref[3]. Note that the notatio,,(r,t) in Ref.
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[3] coincides with the notatioR(r,t) in this paper. Follow- 1
ing the arguments of Relf3], one can prove that the function R(A)=> BLYLo(Q9 \/? (21
L w

PL(r,t)ex + )t 15 . o .
n(N DS (pst pa)t] (19 Relation(21) implies that we have chosen the reference axis

relation Bo=1 since

Jan if L=0,

(nst)"3, (16 fdQYLo(Q):[ 0 if L>0. (22

L _ _ L E
Pn(f,t)—eXF[ (st /La)t]qn(t

where we have introduced the functiog$(v). Using Eq.  To find the migration probability density along the vector
(16), we obtain the following recurrence relation for the we expandR(f) with respect to this direction:
quantitiesq’(v):

YLM(Qr)

s

Taking Egs.(10) and(8) into account yields

R<ﬁ>=§ BLDk1o(0,(51),0 (23

1 (1 ~ =
ha(V)= 50 | dwwS a2l +1) i w)
L

Ym(V,W) Yyt
Xf dyl_ —_
(A=wltttw Y P(r,)=P(r,)[R(M)]=2 BLPL(cogs))PH(r 1).
vi-wiy (1= y)? ]
<Py 2v(l—17y) ]I:Jsinr? Eq.(16), we obtt)aitr)l Ithedfollowing practical expression
or the migration probability density:
o[ VWY - (1-9)° . ? b Y y
Pl 2wmya—y ) (7 P(r,t)=extf — (us+ palt]
L )
max o r
where x> 3 ﬁLPL(cos(s,r»qh(—)wst)“3.
1—v £=0 n=0 t
1—w if w<v, (18) (24)
V,W)= —~
YV W) l+v TRV where ,r) is the angle betwees andr. The values ofL

1+w over which the sum is calculated in EQ4) are those con-
tained in the phase function expansi@) (see next section

Equation(17) enables one to calculate the functiquﬁ(v) for detailg. Since this function is not known quite exactly, it
for arbitraryn andL starting fromn=0 for each value ot is sufficient to restrict oneself to the valuks=0,1. Higher
values ofL determine details of the phase function that are
not important in applications and can be taken into account
by a slight change in the parametgrsand a4 [see Eq(5)].
As for the sum over the number of scatteringsthe number
In numerical calculations it is more convenient to apply Eq.of terms effectively contributing depends on the values of
(17) starting fromn=1 than fromn=0 because5(v) con- andt increasing witht and decreasing as approacheg
tains ad function. The functiong|;(v) can be obtained ana- (draws nearer the light front; let us recall that the light ve-
lytically; we give them below for the case;=0 with T locity is assumed to be 1 in this pap€eFhe essential point to

3
ab(v)= 7> (2L+1)P5(v—1). (19

21 stress here is that the diffusion approximation yields good
enough results for large values mfSo the present approach
Mg 14v 14v is complementary to the diffusion approximation.
q(l)(v)= In—+a1\/§(vzln——2v ]
47v 1-v 1-v

Ill. NUMERICAL ANALYSIS OF PHOTON MIGRATION

We performed calculations of the photon migration prob-
abilities based on Ed24) in the preceding section. Toward
this end, the functionqh(v) were first calculated using re-

] currence relation§l7) and stored in computer memory. Val-

' ues were calculated fan up to 30, which enables one to

(20) calculate probability densities fart<15 with an accuracy

to within 1%. Figures 2 and 3 plot the functioqg(v) and

To obtain the migration probability it is sufficient to know qr11(v). We assumed in the calculations that the expansion of
the quantitiesqh(v). Let R(A) be the photon flux distribu- the phase function in Eq5) contained the terms witih
tion at the starting point normalized to unity. After expand-=0 andL=1 only. Therefore the only parameter specifying
ing over spherical harmonics, we have the phase function isy,. Its positive definiteness implies

2+1)l 1ty 2
(v )nl—v \Y;

V3ud
1, s
Ql(v) - 16’7TV2 [ 2

+a1\/§

1+v
(1+3v4)lnm— 2v(1+3v?)
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ah(v)
n=2>5
10+
M
n=4
$
n=3 —
0 0 z
N
n=2 d
FIG. 4. Scheme of photon travel for which the migration prob-
n=1 abilities were calculated.
0 1w wheres is the distance between the detection point andzthe
FIG. 2. Functiongi®(v) for some values ofi. axis. zmax in Eq. (25) is defined by the inequality
. . . . rv— Iy <t—z, 26
that |a;|<1W3. Here a;=0 vyields isotropic scattering, "=l 26
whereas the valua,=1/3 corresponds to the case with no which yields
backward scattering. Since scattering into the forward hemi- t+d g2
sphere dominates, values af=0 are physically sensible. Zmax:T_ 20t—d)° (27)

The second parameter we used in our calculations was the
scattering coefficienks. We ignored photon absorption, set- The migration probability?(ry,—ry, t—2) entering into Eq.
ting u,=0. Figure 4 depicts photon travel through the me-(25) is calculated using formul&24). The parameterg,_
dium that we used in the calculations. At the initial podit  specifying the angle distribution of the photon scattered at
the photon is directed along theaxis as is the case for laser the pointN should be set equal i@, appearing in Eq(5) for
light injection. The photon is detected in the plane normal tothe phase function. Table | summarizes the results of our
this axis and offset from the poi@ by the distancel. The  calculations. For each value aof (the z coordinate of the
first scattering occurs at the poift So the probability of —detection plang we computed the migration densities for
migration to the detection point can be represented as ~ Various values o$ (distance from the detection point to the
axis). The values ofs are given in the first line of each
Zmax segment of the table. Clearlg=\t?—d?. In all cases the
PM(t,dyS)ZMsL dzexp(—usZ)P(ry—rn.t—2), total migration timet=15. The second line contains exact
(25) values of the migration probability densities for anisotropic
scattering withug=1 anda;=0.5. The third line gives the
best-fit data obtained if the scattering is considered to be
isotropic, the fitting parameter being the scattering coeffi-
cient us. The best-fit value ofug is given above each seg-
ment of the table. We considered two classes of detection
planes: forward lying and rear lying. The latter ones are lo-
cated behind the light source and can be reached by diffusely
reflected photons only. The criterion we used in the fitting
procedure is the root-mean-square relative error given by the
formula

-2

4, (v)

1/2

(28)

with s,=k. The values of5 corresponding to the best fit are
given together with the. values. As can be seen from Table

I, an approach with isotropic scattering with an effective
scattering coefficient can yield a very poor approximation
only. The approximation gets worse for more distant detec-
tion planes. The reason is obvious: in this case the first
transmitted photons play a more important role, but they ex-
FIG. 3. Functiongy}(v) for some values oh. perience a smaller number of scatterings on average and the

Pﬁ/lxactt 1 d 1 Sk) - Pil\s/IOtropic(t ’ d 1 Sk) ) z
Pytt,d,sy)

0
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TABLE I. Probabilities of photon migration according to the scheme of Fig. 4.

d=11, u=0.91, 5=54%
s 0 1 2 3 4 5 6 7 8 9 10

Exact 4.5<107° 4.2x107° 3.6x107° 2.7x107° 1.7x107° 9.5x10°% 4.3x10°°% 1.5x10°% 3.6x10°7 5.0x10°® 1.5x10°°
Fit 2.6x107° 2.4x10°% 1.9x10°% 1.3x10°% 7.3x10°% 3.6x10°% 1.5x10°® 54x10°7 1.5x10°7 2.9x10°8 2.5x10°°

d=10, 1s=0.82, 5=28%
s 0 1 2 3 4 5 6 7 8 9 10

Exact 9.%x10°° 9.3x10°° 8.0x10°° 6.2x10°° 4.3x10°° 2.6x10°° 1.3x10°° 55x10°°% 1.7x10°°% 3.9x10 ' 4.8x10°8
Fit 8.7x10°% 8.2x10°% 6.7x10°% 4.9x10°® 3.1x10°® 1.7x10°® 8.4x10°% 3.5x10°% 1.2x10°® 3.5x10°7 7.1x10°8

d=5, us=0.69, 5= 6.9%
s 0 1 2 3 4 5 6 7 8 9 10

Exact 8.8<107% 8.5x107 % 7.6x107% 6.3x107% 4.9x107% 3.4x10°% 2.2x107%4 1.3x107% 6.3x107° 2.7x10°° 9.3x10°°
Fit 9.4x10°* 9.0x10™* 7.9x10°* 6.4x10°* 4.8x10°* 3.3x10°* 2.0x10°* 1.1x10™* 5.9x10°° 2.7x10°° 1.1x10°°

d=—5, us=0.76,5=5.9%
s 0 1 2 3 4 5 6 7 8 9 10

Exact 3.1x10 % 3.0x10 % 2.7x10 % 2.2x10 % 1.7x10 % 1.2x10 % 7.3x10°° 4.1x10° 2.0x10° 85x10 % 2.9x10°®
Fit 3.3x10°% 3.2x10°% 2.8x10°% 2.3x10°* 1.7x10°* 1.1x10 % 6.9x10°® 3.8x10°® 1.9x10°°® 8.4x10°® 3.2x10°©

d=—10, us=0.91, §=32%
s 0 1 2 3 4 5 6 7 8 9 10

Exact 7.x10° % 6.8x10°° 5.8x10°° 4.4x10°° 3.0x10°% 1.7x10°% 8.7x10 7 3.6x10 7 1.1x10 7 2.5x10°% 3.2x10°°
Fit 5.0x10°% 4.7x10°% 4.0x10°® 3.0x10°® 2.0x10°® 1.1x10°® 57x10°7 2.5x10°7 8.8x10°8 2.5x10°8 4.8x10°°

d=—11, us=1.01, 5=60%
s 0 1 2 3 4 5 6 7 8 9 10

Exact 2.0<10°6 1.9x10°® 1.6x10° 1.1x10° 7.3x10 7 3.9x10 ' 1.8x10 ' 6.1x10 % 1.5x10 8 2.1x10 ° 5.8x10 !
Fit 8.3x10°7 7.8x10°7 6.3x10°7 4.5x10°7 2.8x10°7 1.5x10°7 6.5x10°8 2.3x10°8 6.6x10°° 1.3x10°° 1.0x10 1

anisotropy is not masked as much as it is for diffusive phothe angle determining the propagation directimee Ref.
tons. [8]). Both approaches substantially improve the diffusion ap-
proximation. Nevertheless, it is clear that they are not suffi-
IV. CONCLUDING REMARKS cient near the light front where the forward direction of light
propagation strongly dominates. A more accurate account of
Let us summarize the results presented in this paper. Wine problem is given in Gershenson’s pap@t where an
have given a method for describing migration probabilities inequation is obtained that is similar to the diffusion equation
an infinite, homogeneous medium scattering photons anisdut includes the angular distribution of the light intensity.
tropically. The result is given in the form of an expansion This equation is expected to predict the intensity of multiple
over the number of scatterings the photon undergoes as $1cattering at_earlier times and shorter distances than the d_if-
migrates in the medium. The expansion converges rapidlyfusion equation can. Note that the approach of this paper is
and the error originating from its cutoff can be easily esti-difficult to apply in the case of a strongly peaked phase func-
mated. The number of terms that need to be included déion because of the poorly converging expansion over spheri-

creases as one approaches the light front, i.e., for the firg@l harmonics. That is why the so-called two-stream theories

transmitted photons. For diffusive photons, where the numare useful in which the forward and backward scattering is

ber of scatterings is large, the diffusion approximation be_assumed to dominate in course of light propaga(ee Ref.

comes a reliable approach. Thus one can say that our methga])._The.present mgthod can be also applied to bpundgd
builds a bridge betSvF;en the two extreme casyes: early tran nedia using the modified Monte Carlo method described in

mitted photons and diffusive photons covering the region ef. [5]. Nevertheless, a generalization of _the present ap-
most difficult for investigation(see Ref[4], for example. proach to bounded media would be very desirable and would
Let us briefly discuss how the present work relates to som u_bstanually Increase Its practical value. Some attempts of
other investigations in this field. First of all, note Ishimaru’s is kind are currently being undertaken.

[6] an_d Furuts_u’s[?] theqries. In these papers diffe_:ren;ial ACKNOWLEDGMENT

equations for light intensity are derived which describe light
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the linear dependence of the light intensity on the cosine operforming the calculations.
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